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I show how continuous products of random transformations constrained by a
generic group structure can be studied by using Iwasawa’s decomposition into
‘‘angular,’’ ‘‘diagonal,’’ and ‘‘shear’’ degrees of freedom. In the case of a Gaussian
process a set of variables, adapted to the Iwasawa decomposition and still
having a Gaussian distribution, is introduced and used to compute the statistics
of the finite-time Lyapunov spectrum of the process. The variables also allow to
show the exponential freezing of the ‘‘shear’’ degrees of freedom, which contain
information about the Lyapunov eigenvectors.
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1. INTRODUCTION

Lyapunov exponents represent the natural way to measure the rapidity of
divergence of a set of infinitesimally close points carried along by a chaotic
or random flow. (1, 2, 14) The simplest example is given when a smooth
N-dimensional dynamical system of the form

ẋ=F(x)

is linearized around a trajectory x(t) giving the linear equation ẏ=X(x) y
for the separation y(t) between two infinitesimally close orbits. The gen-
erator of the tangent dynamics, Xij=“iF/“xj, is known as the stability
matrix of the system. The evolution of the initial separation y(0) is for-
mally given by the expression

y(t)=g(t) y(0)



where g(t) is the time-ordered product

g(t)=T exp 5F
t

0
X(tŒ) dtŒ6 (1)

The N time-dependent Lyapunov exponents l1(t) \ · · · \ lN(t) are defined
as the eigenvalues of the symmetric matrix (2t)−1 log[g†(t) g(t)], and
measure the rate of growth of infinitesimal k-dimensional volumes
(k=1,..., N). Oseledec (32) proved under very general conditions the exis-
tence of the t Q . limits of the lk(t) and of the eigenvectors fk(t) of
g†(t) g(t).

A common ansatz for strongly chaotic systems assumes that the sta-
bility matrices X(t) decorrelate in a characteristic time, shorter with respect
to other time scales of the system, and can therefore be treated as a succes-
sion of independent linear transformations.(14) Then the separation y(t)
evolves according to the stochastic equation

ẏ=X(t) y (2)

After carefully specifying the statistics of the random process X(t), and
choosing in particular one of the standard (Itô or Stratonovich) regular-
ization for (2), the averages of functionals f[y(t)] over the random
realizations y(t) can be written in the form of path integrals: (34)

Of[y(t)]P=F DX f[y(t)] e−S[X] (3)

The problem of computing averages of the form (3) is quite general, and
appears both in the context of quantum and classical systems.

In the theory of quasi one-dimensional disordered wires (3) the study
of low-temperature conductance fluctuations in small metallic samples is
reduced to the computation of the statistics of g†(L) g(L), where g(L) is
the 2n × 2n transfer matrix for a wire of length L and n is the number of
transverse modes at the Fermi level. (15) The transfer matrix g(L) can be
naturally written in the form (1) as an ordered product of transfer matrices
for infinitesimal portions of wire. Here the role of time is played by the
length L of the sample, and the role of the Lyapunov exponents by
(inverse) localization lengths. Ensemble averaging implies the computation
of path integrals of the form (3), where the infinitesimal transfer matrices X
are constrained by symmetry considerations. In the presence of time rever-
sal symmetry the X matrices belong to the sp(n, R) algebra, if time reversal
symmetry is broken they belong to su(n, n), and in the presence of spin-
orbit scattering to sog(4n). (25)
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In the theory of passive scalar transport in n-dimensional space (17) the
computation of many statistical quantities, such as the exact p.d.f.’s of the
scalar (7, 11, 13, 20) and of its gradients, (10, 21) can be reduced to the form (3),
where X is a matrix of velocity gradients of the carrying fluid. The matrices
X are the infinitesimal generators of the dynamics of an incompressible
fluid element and belong to the sl(n, R) algebra.

In the study of deterministic chaos, products of random matrices have
been used to mimic the chaoticity of dynamical systems. (14) In the case of
n-dimensional Hamiltonian systems one has products of random symplectic
maps. (5, 33) This formally leads to expressions of the form (3) where the
matrices X belong to the sp(n, R) algebra. Similar models have been
recently used to study the hydrodynamic modes in the Lyapunov spectrum
of extended dynamical systems. (16)

In many of these cases analytic results were obtained. Such results
were made possible by the presence of three main ingredients: (i) Markov-
ianity;2 (ii) Gaussianity; and (iii) the presence of a group structure in the set

2 Although results were obtained also with time-correlated statistics, see, e.g., refs. 11 and 18.

of transformations and of a statistics compatible with it (i.e., a statistics
that can be expressed in terms of the intrinsic geometry of the transforma-
tion group).

While the physical support for the first two assumptions is in some
cases questionable, the existence of a group structure lays on stronger
foundations, since it directly reflects the symmetries of the underlying
physical problem.

In the case of quasi one-dimensional wires, results were obtained
studying the Fokker–Planck equation for the transmission eigenvalues as a
diffusion equation over Riemannian manifolds. (4, 9) A similar approach has
been also applied to the case of passive scalar transport. (7) On the other
hand, functional integral representations of the form (3) for the probability
densities can be exploited directly (8, 10–13, 21, 31) and can provide an intuitive
description of the statistics of the Lagrangian trajectories described by
Eq. (2). Path integral representations also provide the ground for several
approximations, like instanton calculus and perturbative expansions.
Actually, the two approaches are complementary and one should switch
from one to the other depending on convenience. However, the Lagrangian
theory has been worked out mainly on specific examples, often relying on
particular features of the given algebras, (20, 21) and not covering the most
general case. The purpose of this work is to present this theory in a suffi-
ciently general setting. It turns out that a formal exposition not only allows
to cover many different cases in a unified way, but also unveils the simple
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geometric meaning of some formulæ and presents a very simple and appeal-
ing scenario, which can hopefully serve as a basis for further investigations.

The starting point of the Lagrangian theory is a convenient decompo-
sition of the time-ordered exponential (1). Let us remind here some facts
about the standard method (6) for the numerical computations of Lyapunov
exponents. An orthonormal set of k vectors is evolved for a time t and a
Gram–Schmidt orthogonalization procedure is applied to the evolved vectors
in order to obtain a new orthonormal set. The procedure is iterated, and by
performing an average of the logarithmic k-volume increase over many
steps one obtains the approximated sum of the first k Lyapunov exponents.
When the evolution operator g(t) belongs to the SL(n, R) group it is easy
to see (23) that the Gram–Schmidt orthogonalization procedure is equivalent
to the decomposition of the evolution operator in the product or three
consecutive transformations, corresponding to a shear, a dilation, and a
rotation: the rotation carries the old orthonormal set in the new one, the
dilation is responsible for the volume increase, and the shear part inherits
from the Gram–Schmidt procedure a triangular form. From an algebraic
point of view, the group element g(t) is decomposed into the product of
a compact, Abelian and nilpotent part. Iwasawa (26) showed that a similar
decomposition can be defined for a large class of groups and is a smooth
mapping (see ref. 23 and Appendix A).

The fact that emerged from a series of works (13, 20, 21, 29, 30) is that start-
ing from normally distributed, centered random variables X it is possible in
certain cases to introduce new variables, adapted to the Iwasawa decom-
position,3 which are still normally distributed. Here it is shown that the new

3 Or to the Gauss decomposition, which was considered in refs. 13 and 29 respectively for the
su(2) and su(n) cases.

variables can be introduced in the quite general case where the random
variables X belong to the algebra of a real semisimple Lie group, and their
covariance has a form compatible with the group structure (cf. Eq. (5)).
It turns out that the definition of the new variables (the {A, M} variables
defined by Eqs. (13) and (23)) is most easily given in terms of the group
structure of the set of transformations, and in particular of the ‘‘adjoint
operator’’ Ad(g) X=gXg−1.

The fact that the new variables are normally distributed is non trivial,
since the Iwasawa transformation is nonlinear, and it is of course quite
relevant in practical calculations. In particular, it allows the rapid compu-
tation of the Lyapunov spectrum, which is encoded in the statistics of
the Abelian part of the Iwasawa decomposition. Although the original
variables X are centered, the Abelian part acquires a positive mean value
thanks to the non-trivial Jacobian factor associated with the variable
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transformation (cf. (35)). This mean value is precisely the finite-time
Lyapunov spectrum, which can be expressed explicitly in terms of the
structure constants of the algebra of the X variables (cf. Eqs. (38) and (39)).

The new variables however contain more information than just the
statistics of Lyapunov exponents. For instance, Eqs. (42), (38), and (37)
prove in a quite general setting the freezing of the ‘‘shear’’ (nilpotent)
degrees of freedom which was used in refs. 10 and 21 to compute the
statistics of passive scalar dissipation. The nilpotent degrees of freedom
actually encode information about the Lyapunov eigenvectors fk(t). For
instance, in the SL(n, R) case it is easy to see that the fk(t) can be obtained
(up to exponentially small terms) by Gram–Schmidt orthogonalization of
the row vectors of the (nilpotent) shear matrix. The exponential freezing of
the shear part therefore implies the exponentially rapid convergence of the
eigenvectors fk(t) to their limits for t Q ., thus providing a particularly
clear realization of Oseledec theorem.

The work is organized as follows. In Section 2, I define the random
process X(t) by assigning its covariance in terms of intrinsic geometric
features of the corresponding algebra. This is equivalent to assigning a
Feynman–Kac measure on the space of paths t Q X(t). The multiplicative
process g(t) is then defined as a time-ordered exponential through the
appropriate (Stratonovich) regularization. In Sections 3–5 the new vari-
ables are defined through the following steps: (i) performing the Iwasawa
decomposition of the process g(t); (ii) introducing intermediate variables,
adapted to the Iwasawa decomposition; (iii) rewriting the Gibbs weight
exp( − S) in terms of the new variables; (iv) computing the Jacobian factor
of the variable transformation, i.e., the transformation rule for the ‘‘volume
form’’ DX; (v) performing a Lie algebra transformation that leads to new,
normally distributed variables. Although the intermediate steps are techni-
cal, the final results are simple and are summarized by formulæ (36)–(40).
In Section 6 the new variables are used to compute the statistics of the
finite time Lyapunov spectrum of a generic linear representation of the
process g(t). In Section 7 the cases of the sl(n, R) and sp(n, R) algebras are
worked out in detail. A brief summary of results of Lie algebra theory are
given in the Appendix.

2. RANDOM WALKS ON LIE GROUPS

The computational scheme outlined in the Introduction can be
implemented in the quite general case where the set of transformations g(t)
form a real semisimple Lie group G (this comprises the case of complex
groups, as soon as they are seen as real groups endowed with a complex
structure). The infinitesimal generators X(t) then lie in the corresponding
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algebra g. Each real semisimple Lie algebra is characterized by two natural
structures: a canonical quadratic form B(X, Y) known as the Killing form,
and an involution h such that B(X, hY) becomes strictly negative definite
(see Appendix A). For instance, in the case g=sl(n, R) (the algebra of real
n × n real matrices with null trace) one has B(X, Y)=2n Tr XY, hX=−X tr

and the effect of h is that of changing the sign of the symmetric part of X.
In order to define a Gaussian probability density on g one needs a

positive definite quadratic form. I will consider here the general linear
combination

F(X, Y)=mB(X, Y)+nB(X, hY) (4)

where m, n are real parameters such that F be positive definite (see (15)
later).

Let X(t) be the Gaussian process on [0, T] with values in g, zero
mean and covariance

OX(s) é X(t)P=d(t − s) · C (5)

where C=F−1, i.e., the random process defined by the Feynman–Kac
measure

dm(X)=K exp 5− 1
2 F

T

0
F(X(t), X(t)) dt6 D

T

t=0
dX(t) (6)

where dX is a Euclidean measure on g and K is an (infinite) normalization
constant. The continuous process X(t) can be seen (19, 22) as the limit of the
discrete process Xj, where Xj=X(tj), tj=jE, E=T/N, defined by the
probability measure

dmN(X)=KN exp 5− 1
2 C

N

j=1
EF(Xj, Xj)6 D

N

j=1
dXj (7)

as N Q ..
Let g(t) be the time-ordered exponential defined by

g(t)=T exp 1F
t

0
X(y) dy2 — lim

N Q .

gN

where gj is defined recursively by

gj=exp(EXj) gj − 1, g0=e (the identity) (8)
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This discretization prescription is compatible with the group structure, and
is of Stratonovich type. As a matter of fact, if G is a linear group (and, in
general, on the universal enveloping algebra of g) one can compute

1
2E

(gj − gj − 1)(g−1
j +g−1

j − 1)=
1
2E

(gj g−1
j − 1 − gj − 1 g−1

j )

=
1
2E

[exp(EXj) − exp( − EXj)]

=Xj+O(E2X3
j )

obtaining

Xj=
gj − gj − 1

E

g−1
j +g−1

j − 1

2
+O(E2X3

j ) (9)

where O(E2X3
j ) denotes a series of terms having order at least 2 in E and

at least 3 in Xj. Such terms can be neglected in averages when N Q .,
as usual in the theory of Feynman–Kac integrals, (19) since OXj é XlP=
E−1djl · C ’ 1/E. In other words, in the limit N Q . one can consider

X(t)=ġ(t) g−1(t)

understanding that the midpoint regularization (9) has to be used
throughout.

3. DECOMPOSITION OF THE TRAJECTORIES

Following the general scheme outlined in the Introduction, let us
perform the Iwasawa decomposition (56) and (57) of the group element gj

corresponding to the discrete time j in the product of a compact, Abelian
and nilpotent part:

gj=kjajnj (10)

where gj is defined recursively as in (8) and kj, aj, nj are functions of gj

obtained by inverting the diffeomorphism (58). Moreover, let us define
Kj, Aj, Nj through the relations

kj=exp(EKj) kj − 1, aj=exp(EAj) aj − 1, nj=exp(ENj) nj − 1 (11)

The variables K, A, N are an intermediate set of new variables, adapted to
the Iwasawa decomposition (10). In order to obtain the explicit form of the
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variable transformation X Q {K, A, N}, one substitutes (10) in (8) and
uses (11):

exp(EXj)=gj g−1
j − 1

=exp(EKj) · Ad(kj − 1) exp(EAj) · Ad(kj − 1aj − 1) exp(ENj)

where Ad(g) X=gXg−1. Using (9) one obtains:

Xj=
1
2E

[exp(EXj) − exp( − EXj)]+O(E2X3
j )

=Kj+Ad(kj − 1) Aj+Ad(kj − 1aj − 1) Nj

+
E

2
[Kj, Ad(kj − 1) Aj]+

E

2
[Kj, Ad(kj − 1aj − 1) Nj]

+
E

2
[Ad(kj − 1) Aj, Ad(kj − 1aj − 1) Nj]+O(E2X3

j ) (12)

where O(E2X3
j ) denotes a series of terms of at least second order in E and at

least third order in Xj, Kj, Aj, Nj. Using

Ad 1exp 1 E

2
X22 Y=Y+

E

2
[X, Y]+O(E2X2Y)

this can be rewritten as

Xj=Kj+Ad(k̃j − 1) Aj+Ad(k̃j − 1 ãj − 1) Nj+O(E2X3
j ) (13)

with k̃j − 1=exp(E

2 Kj) kj − 1, ãj − 1=exp(E

2 Aj) aj − 1.
Formula (13) extends the Iwasawa decomposition on the Lie algebra g

to a natural decomposition

(Kj, Aj, Nj) Q Xj

of the random process Xj, which corresponds to the decomposition (10) at
the group level. Observe that

k̃j − 1=k̃j − 1(Kj, Kj − 1,..., K1), ãj − 1=ãj − 1(Aj, Aj − 1,..., A1)

and that the appearance of k̃j − 1 and ãj − 1 means that at the continuum level
the midpoint regularization (9) applies also to the group terms arising from
the Iwasawa decomposition.
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4. DECOMPOSITION OF THE GIBBS WEIGHT

Relation (13) can now be used to express the Gibbs weight defined
through (4) in terms of the new variables. Using the orthogonality with
respect to B of a to both k and n, of n with itself, and properties (53)–(55),
a simple computation shows that

F(Xj, Xj)=(m+n) B(Kj − K0
j , Kj − K0

j )+(m − n) B(Aj, Aj)

−
m − n

2
B(Ad(ã2

j − 1) Nj, hNj) (14)

with

K0
j =− 1

2 [Ad(k̃j − 1 ãj − 1) Nj+h Ad(k̃j − 1 ãj − 1) Nj]

Recalling that B(X, X) > 0 on p, B(X, X) < 0 on k, and B(X, hX) < 0
on g, and using (54) and (55), it is clear that F(X, X) > 0 if

m > n and m < − n (15)

The last two rows of (14) can be written more explicitly by expanding
over the basis Ya defined in (62) and a basis Hl of a:

Nj= C
a ¥ P

Na
j Ya, Aj=C

l
A l

jHl (16)

Then using

ad(Aj) Ya=a(Aj) Ya (17)

Ad(ãj − 1) Ya=exp[a(exp−1 ãj − 1)] Ya (18)

with

exp−1 ãj − 1= C
j − 1

l=1
EAl+

E

2
Aj (19)

one gets

B(Aj, Aj)=C
k, l

Ak
j A l

j B(Hk, Hl) (20)

B(Ad(ã2
j − 1) Nj, hNj)= C

a, b ¥ P
Na

j Nb
j exp[2a(exp−1 ãj − 1)] B(Ya, hYb) (21)
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Here the matrix B(Hk, Hl) is directly related to the Cartan matrix which
characterizes the Lie algebra g. A list of Cartan matrices for all semisimple
Lie algebras can be found in ref. 23. The matrix B(Ya, hYb) is non-degen-
erate, it is diagonal if the multiplicities (59) are all 1 and is related to the
way the Cartan involution h permutes the roots otherwise. (23)

It is often necessary to compute averages of functionals F({aj}) which
do not depend on kj, nj. In this case, the form of (14) shows that inte-
gration over <N

j=1 dKj produces only a constant factor. Integration over
<N

j=1 dNj produces instead a factor proportional to

D−1/2
N — D

N

j=1
D
a ¥ P

exp[− a(exp−1 ãj − 1)]

=D
N

j=1
exp[− 2r(exp−1 ãj − 1)]

=D
N

j=1
exp 5− 2 C

j − 1

l=1
Er(Al) − Er(Aj)6 (22)

where notation (65) was used.
Expression (14) takes a simpler form if one introduces the ‘‘rotated’’

variables

Mj=Ad(ãj − 1) Nj (23)

The variable change N Q M introduces however a Jacobian factor

“({Mj})
“({Nj})

=D
N

j=1
det(Ad(ãj − 1)|n)

=D
N

j=1
exp[Tr ad(exp−1 ãj − 1)|n]

=D
N

j=1
exp 5 C

a ¥ P
a(exp−1 ãj − 1)6

=D
N

j=1
exp 52 C

j − 1

l=1
Er(Al)+Er(Aj)6=D1/2

N (24)

Integration over the variables Mj would than produce a constant (inde-
pendent from Aj) factor. Moreover, factor (24) will be seen to cancel
exactly a corresponding factor emerging in the global Jacobian (30).
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5. DECOMPOSITION OF THE VOLUME FORM

Along with the variables Xj and Kj, Aj, Nj, which belong to the
algebra g of infinitesimal transformations, one can consider the ‘‘inte-
grated’’ variables gj and kj, aj, nj defined in (8) and (10). All together, one
has the following commutative diagram of variable transformations:

{gj} Ł {kj, aj, nj}

‡ ‡

{Xj} Ł {Kj, Aj, Nj}

(25)

where the variables of the upper row belong to the group G and those of
the lower row to the corresponding algebra g. The relation between the
two set of variables can be found by varying (12):

dXj=dKj+Ad(kj − 1) dAj+Ad(kj − 1aj − 1) dNj

+
E

2
{[dKj, Ad(kj − 1) Aj]+[Kj, Ad(kj − 1) dAj]

+[dKj, Ad(kj − 1aj − 1) Nj]+[Kj, Ad(kj − 1aj − 1) dNj]

+[Ad(kj − 1) dAj, Ad(kj − 1aj − 1) Nj]

+[Ad(kj − 1) Aj, Ad(kj − 1aj − 1) dNj]}

+O(E2X2
j dXj)+f(dXj − 1, dXj − 2,..., dX1) (26)

The variation dXj ¥ Tg can be identified with the 1-form dXj( · )=
F(dXj, · ). In (26), O(E2X2

j dXj) denotes a 1-form in dKj, dAj, dNj whose
coefficients are at least of second order in E and in Kj, Aj, Nj, while
f(dXj − 1, dXj − 2,..., dX1) denotes a 1-form in dKl, dAl, dNl for l < j.

On the other hand, the measure dm(X) can be re-expressed in terms of
the Haar measure on G, by computing the variation

dgj g−1
j =5E dXj+

E2

2
(dXj Xj+Xj dXj)+O(E3X2

j dXj)6 · gj − 1 g−1
j

+f(dXj − 1,..., dX1)

=5E dXj+
E2

2
(dXj Xj+Xj dXj)6(1 − EXj)

+O(E3X2
j dXj)+f(dXj − 1,..., dX1)

=E dXj+
E2

2
[Xj, dXj]+O(E3X2

j dXj)+f(dXj − 1,..., dX1)
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so that

1
E

dgj g−1
j =Ad 1exp 1 E

2
Xj
22 dXj+O(E2X2

j dXj)+f(dXj − 1,..., dX1)

In the continuum limit, terms O(E2X2
j dXj) contribute to the measure with

a constant factor which ensures the correct normalization.4 One then has

4 One can treat terms ’ E2X2
j dXj as a perturbation in integrals over the measure (7) and use

Wick’s theorem to compute their contribution. They give a contribution OE2X2
j P ’ E, but

their product with any power of EXj higher than 0 is negligible in the continuum limit. The
contributions ’ E sum up to give a constant factor.

L
N

j=1
L

dim g

l=1
dlXj 3 L

N

j=1
L

dim G

l=1
dl gj g−1

j

where the dlX span T0g, dl g g−1 span TeG 4 T0g, and one uses the facts
that

1. the f(dXj − 1,..., dX1) terms cancel in the exterior product with dXj

terms;
2. semisimple Lie groups are unimodular, i.e., |detAd(g)|=1 for

every g ¥ G.

So:

D
N

j=1
dXj 3 D

N

J=1
dgj

where dg denotes the Haar measure on G. In other words, the variable
transformation {Xj} Q {gj} has trivial Jacobian and dm(X)=dm(g), where

dm(g)=KŒ exp 5− 1
2 F

T

0
F(ġg−1, ġg−1) dt6 D

T

t=0
dg(t)

To the two horizontal arrows of diagram (25) there correspond the
Jacobians defined by

D
N

j=1
dgj=JG

N({kj, aj, nj}) D
N

j=1
dkj daj dnj (27)

D
N

j=1
dXj=Jg

N({Kj, Aj, Nj}) D
N

j=1
dKj dAj dNj (28)
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The variable transformations corresponding to the two vertical arrows
have trivial Jacobians, so

Jg
N({Kj, Aj, Nj}) 3 JG

N({kj, aj, nj}) (29)

The product of Haar measures on both sides of (27) is invariant under the
global transformations

gj Q kR gj, gj Q gjnL, with kR ¥ K, nL ¥ N

which correspond to

kj Q kRkj, nj Q njnL

By induction over N, this shows that JG
N does not actually depend on

{kj, nj}. From (29) then follows that Jg
N does not depend on {Kj, Nj}.

The actual value of the Jacobian can now be computed either at the
group or at the algebra level. At the group level, using (64), one gets

JG
N=D

N

j=1
exp[2r(exp−1 aj)]=D

N

j=1
exp 52 C

j

l=1
Er(Al)6

=D
N

j=1
exp 52 C

j − 1

l=1
Er(Al)+Er(Aj)6 · exp 5 C

N

j=1
Er(Aj)6

=D1/2
N · JG, loc

N (30)

The decomposition of JG
N into an ultralocal part D1/2

N and a local part JG, loc
N

is such that the ultralocal part cancels exactly the factor (22) which appears
when integrating functionals of the form F({aj}) over <N

j=1 dKj · <N
j=1 dNj.

The ultralocal factor D1/2
N is also exactly canceled when passing to the

‘‘rotated’’ variables Mj defined in Eq. (23).
The result (30) can be checked by repeating the computation at the

algebra level. Recalling that Jg
N cannot depend on Kj, Nj, we can set

Kj=0, Nj=0 in (26), getting

dXj=dKj+dAj+Ad(aj − 1) dNj+
E

2
[dKj, Aj]+

E

2
[Aj, Ad(aj − 1) dNj]

+O(E2X2
j dXj)+f(dXj − 1,..., dX1)

=Ad 1exp 1 −
E

2
Aj
22 dKj+dAj+Ad 1exp 1 E

2
Aj
2 aj − 1

2 dNj

+O(E2X2
j dXj)+f(dXj − 1,..., dX1) (31)
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Using (61) and (62) to expand Nj=;a ¥ P dNa
j Ya, one gets

Ad 1exp 1 E

2
Aj
2 aj − 1

2 dNj= C
a ¥ P

exp 5a 1 E

2
Aj+ C

j − 1

l=1
EAj

26 dNa
j Ya (32)

Using (61) and (62) to expand dKj=dK0
j +;a ¥ P dKa

j (Ya+hYa), where
dK0

j ¥ m, and recalling (60), one gets

ad(Aj) dKj= C
a ¥ P

a(Aj) dKa
J(Ya − hYa)

= C
a ¥ P

a(Aj) dKa
J[2Ya − (Ya+hYa)]

=N0
j − C

a ¥ P
a(Aj) dKa

J(Ya+hYa)

with N0
j ¥ n, and

11 −
E

2
ad(Aj)2 dKj

= C
a ¥ P

exp 5a 1 E

2
Aj
26 dKa

j (Ya+hYa) −
E

2
N0

j +O(E2A2
j dKj) (33)

Now using (31)–(33) and the decomposition (56), observing that the terms
f(dXj − 1,..., dX1) cancel in the exterior product with dXj (the transforma-
tion {Xj} Q {Kj, Aj, Nj} is triangular in the index j), and that O(E2X2

j dXj)
terms contribute only to a normalization factor (see footnote 3), one gets

Jg
N 3 D

N

j=1
D
a ¥ P

exp 5a 1 C
j − 1

l=1
EAj+

E

2
Aj
26 exp 5a 1 E

2
Aj
26

=D
N

j=1
exp 52 C

j − 1

l=1
Er(Al)+Er(Aj)6 · exp 5 C

N

j=1
Er(Aj)6

=D1/2 · Jg, loc
N (34)

as expected.
Taking into account (30), (34), and (24) it is clear that the Jacobian of

the transformation

{Xj} Q {Kj, Aj, Mj}

is proportional to the simple local factor

Jg, loc
N =exp 5 C

N

j=1
Er(Aj)6 (35)
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6. STATISTICS OF LYAPUNOV EXPONENTS

Classical groups are groups of transformations of Rn or Cn. Let ( , ) be
a scalar product on Rn or a hermitian product on Cn. Let v be a vector of
Rn or Cn, gv the action of the group element g on v. Let g(t) be a random
walk on a (real or complex) classical group G. Then

||g(t) v||2=(g(t) v , g(t) v)=(g†(t) g(t) v , v)

so that the rate of growth of ||g(t) v|| is related to the highest eigenvalue of
g†(t) g(t). More generally, the rate of growth of the parallelepiped gener-
ated by l vectors v1,..., vl, is related to the sum of the first l eigenvalues
exp(2l1(t) t),..., exp(2l l(t) t) of the hermitian matrix g†(t) g(t): (14)

l1(t)+ · · · +l l(t)=
1
t

log
Vol(g(t) v1 N · · · N g(t) vl)

Vol(v1 N · · · N vl)

The eigenvalues l1(t),..., l l(t) are the (time dependent) Lyapunov expo-
nents of the process g(t).

For the classical algebras the Cartan involution h is just hZ=−Z†,
which exponentiates to the group automorphism G defined by Gg=(g†)−1.
Let T be a finite dimensional representation of G such that (66) holds. In
general, the (time dependent) Lyapunov exponents of the process g(t) can
be seen as the eigenvalues of

(2t)−1 log[T†(g) T(g)]=−(2t)−1 log T(g−1Gg)=(2t)−1 log T(Gn−1 · a2 n)

or equivalently as the eigenvalues of

(2t)−1 log[T(a2) T(nGn−1)]

After integrating out the k component, incorporating the contribution of
Jg, loc

N , and using (20), (21), and (52), F(Xj, Xj) reduces to,

Fa+n (Xj, Xj)=(m − n) C
k, l

B(Hk, Hl) Ak
j A l

j − C
l

C
a ¥ P

B(Hl, Ha) A l
j

−
m − n

2
C

a, b ¥ P
exp 5a 1 C

j − 1

l=1
2EAj+EAj

26 B(Ya, hYb) Na
j Nb

j

(36)

=Fa (Xj, Xj) −
m − n

2
C

a, b ¥ P
B(Ya, hYb) Ma

j Mb
j (37)
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After integrating out the M-variables, and taking into account the obser-
vations following (22) and (30), Fa+n (Xj, Xj) reduces to Fa (Xj, Xj). This
shows that in the {Kj, Aj, Mj} representation the Aj are Gaussian random
variables with positive mean

OAk
j P=

1
2(m − n)

C
l

Ckl C
a ¥ P

B(Hl, Ha) (38)

where

(C−1)kl=B(Hk, Hl) (39)

and covariance

OAk
j A l

jPc=
1

m − n
Ckl (40)

On the other hand, (38) and (40) together with (36) show that the n
variables diffuse, while the a variables perform a ballistic motion, diffusing
around straight trajectories. This means that for t ± 1 and with logarith-
mic precision the time dependent Lyapunov exponents coincide with the
eigenvalues of

1
2t

log T(a2(t))=
1
t

y(exp−1(a(t)))

=
1
t

y 1F
t

0
A(tŒ) dtŒ 2

=
1
t

F
t

0
dtŒ C

k
Ak(tŒ) yk (41)

with T(exp(X))=exp(y(X)) and yk=y(Hk). The operators yk all com-
mute, so it is possible to write (41) in block-matrix form. This means that
the Lyapunov exponents are just the 1

t > t
0 dtŒ Ak multiplied by the eigen-

values of the operators yk.
Let us describe more precisely the statistics of the n variables. Expres-

sion (37) shows that the Mj are Gaussian random variables with zero mean
and O(1) covariance. Expanding the Mj and Nj on the basis Ya one finds
the explicit expression

Na
j =exp 5− a 1 C

j − 1

l=1
EAl+

E

2
Aj
26 Ma

j , a ¥ P (42)
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From the positiveness of a and of OAk
j P, k=1,..., dim g, and passing to the

continuum limit, it follows that typical values of the Na(t) are exponen-
tially small in t. Correspondingly, the n(t) variables become frozen after a
time t=O(1). The freezing of the n variables has been observed in ref. 10
and used to obtain analytic results about the statistics of the dissipation
of a passive scalar field in refs. 10 and 21. Moreover, it provides a nice
realization of Oseledec theorem about the stability of the Lyapunov basis
in the t Q . limit. (32)

7. EXAMPLES

Let Eij denote a square matrix with entry 1 where the i th row and the
jth column meet, all other entries being 0. Then

EijEkl=djkEil, [Eij, Ekl]=djkEil − dliEkj

The Case of sl(n, R). In this case gC is the algebra of n × n matrices
with zero trace. Letting

Hi=Eii − Enn (1 [ i [ n − 1), hC=C
i

CHi (43)

one has the direct decomposition (23)

gC=hC+C
i ] j

CEij (44)

If H ¥ hC and ei(H) (1 [ i [ n) are the diagonal elements of H, one has

[H, Eij]=(ei(H) − ej(H)) Eij (45)

The Killing form is

B(X, Y)=2n Tr(XY) (46)

The roots are

ei − ej (1 [ i, j [ n)

which are duals to the elements 1
2n (Hi − Hj) ¥ hR. The compact real form

for sl(n, C) is u=su(n), the algebra of skew hermitian matrices; hC are the
diagonal matrices with null trace, a=hR are the real matrices of hC. Taking
lexicographic ordering with respect to the basis ei − en (1 [ i [ n − 1) of the
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dual of hR, i.e., assuming ei − en > ej − en and consequently ei − ej > 0 for
i < j, one finds

nC=C
i < j

CEij={strictly upper triangular matrices}

g=sl(n, R) is the real form corresponding to the conjugation sZ=Z̄. The
Cartan involution is hX=−X tr. One has k=u 5 g=so(n), p are the real
symmetric matrices with null trace, a the diagonal matrices of p, n the real
matrices of nC. The restricted roots coincide with the roots ei − ej. Letting
Aj=;n − 1

k=1 Ak
j Hk and using (38)–(40), (43), and (46), a simple computation

gives:

OAk
j P=

1
2(m − n)

n − 2k+1
2n

, k=1,..., n − 1 (47)

and

OAk
j A l

jPc=
1

2n(m − n)
1dkl −

1
n
2

Eq. (47) reproduces Eq. (39) in ref. 20 letting m=1/4Dn, n=0 and Eq. (25)
in ref. 21 letting m=1/2n2(n+2) D, n=−(n+1)/2n2(n+2) D.

The Case of sp(n, R). In this case gC is the algebra of complex
matrices of the form (X

Z
Y

− Xtr), with Y=Y tr and Z=Z tr. Letting

Hi=Eii − En+i, n+i (1 [ i [ n), hC= C
n

i=1
CHi (48)

one has the direct decomposition (23)

gC=hC+C
i [ j

C(En+i, j+En+j, i)+C
i [ j

C(Ei, n+j+Ej, n+i)

+C
i ] j

C(Ei, j+En+j, n+i) (49)

Let ej be the linear form on h given by ej(Hi)=dij; then

[H, En+i, j+En+j, i]= − (ei(H)+ej(H))(En+i, j+En+j, i) (i [ j)

[H, Ei, n+j+Ej, n+i]=(ei(H)+ej(H))(Ei, n+j+Ej, n+i) (i [ j)

[H, Ei, j − En+j, n+i]=(ei(H) − ej(H))(Ei, j − En+j, n+i) (i ] j)
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The Killing form is

B(X, Y)=(2n+2) Tr(XY) (50)

The non zero roots are ( ± signs read independently)

± 2ei (1 [ 1 [ n), ± ei ± ej (1 [ i < j [ n)

The roots 2ej are dual to the elements 2
4(n+1) Hi ¥ hR. The compact real form

is

u=sp(n)=31 U
− V̄

V
Ū
2 : U+U†=0, V=V tr4

Taking lexicographic ordering with respect to the basis ei (1 [ i [ n) of the
dual of hR it is seen that the positive roots are ei+ej (i [ j) and ei − ej

(i < j). Consequently

nC=C
i [ j

C(Ei, n+j+Ej, n+i)+C
i < j

C(Ei, j − En+j, n+i)

=31X
0

Y
− X tr

2 , Y=Y tr, X strictly upper triangular4

g=sp(n, R) is the real form corresponding to the conjugation sZ=Z̄.
One has

k=sp(n) 5 so(2n)

p=31X
Y

Y
− X

2 : X=X tr, X=X̄, Y=Y tr, Y=Ȳ4

a={diagonal matrices of p}

n={real matrices of nC}

Restricted roots just coincide with roots. Letting Aj=;n
k=1 Ak

j Hk and
using (38)–(40), (48), and (50), a simple computation gives

OAk
j P=

1
2(m − n)

n − k+1
2(n+1)

, k=1,..., n

and

OAk
j A l

jPc=
1

4(n+1)(m − n)
dkl
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APPENDIX A. LIE–CARTAN THEORY

I recall here some results from the theory of Lie algebras (23, 24, 27, 28) for
convenience and in order to establish the notations, which partially parallel
those of ref. 23.

Any complex Lie algebra gC can be seen as a real Lie algebra endowed
with a complex structure. A real form of a complex Lie algebra gC is a real
Lie algebra g such that gC=g+ig (direct sum of vector spaces) where g
and ig are identified with subalgebras of gC. Thus gC is isomorphic to the
complexification of g. (E.g., sl(n, R) is a real form of sl(n, C).) There is
a 1–1 correspondence between the real forms of a Lie algebra and the
conjugations s: X+iY Q X − iY (X, Y ¥ g). (E.g., sl(n, R) corresponds to
the conjugation s: Z Q Z̄ of sl(n, C).) A compact Lie algebra is a real Lie
algebra which is isomorphic to the Lie algebra of a compact Lie group.
Every semisimple Lie algebra gC over C has a compact real form u, which
is unique (up to automorphisms; e.g., su(n) is the compact real form of
sl(n, C); it corresponds to the conjugation y: Z Q − Z†).

A Cartan subalgebra hC of a complex Lie algebra gC is a maximal
Abelian subalgebra such that the endomorphism ad H: X Q [H, X] is
semisimple (i.e., gC can be written as a direct sum of irreducible invariant
subspaces of ad H for all H ¥ hC). Every semisimple Lie algebra over C has
a Cartan subalgebra which is unique (up to automorphisms; e.g., diagonal
matrices with null trace form a Cartan subalgebra of sl(n, C)).

On each real and complex Lie algebra one can define the Killing form
B(X, Y)=Tr(ad X ad Y), where Tr denotes the trace of the vector space
endomorphism. (E.g., B(X, Y)=2n Tr XY for X, Y ¥ sl(n, C).) Every
semisimple Lie algebra over C has a real form u such that B is strictly
negative definite on u (it then follows that u is compact, cf. above; e.g.,
Tr X2=−Tr XX† < 0 for X ¥ su(n), X ] 0).

A complex Lie algebra gC over C can be decomposed in the direct sum
of the simultaneous eigenspaces (root subspaces)

ga
C={X ¥ gC : ad(H) X=a(H) X for all H ¥ hC}

where the linear function a: hC Q C is called a root (of gC with respect
to hC) if ga

C ] {0}. Let D denote the set of nonzero roots. One has the root
decomposition

gC=hC+ C
a ¥ D

ga
C (direct sum) (51)

with the properties: (i) dim ga
C=1 for each a ¥ D; (ii) ga

C and gb
C are

orthogonal under B if a, b are any two roots and b ] − a; (iii) B is non
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degenerate on hC and for each linear function a on hC there exists a unique
Ha ¥ hC such that

a(H)=B(H, Ha) (52)

for all H ¥ hC; (iv) if a ¥ D, then − a ¥ D and [ga
C, g−a

C ]=CHa and
a(Ha) ] 0. Let hR=;a ¥ D RHa. Then by (iii), D can be seen as a subset
of the dual space h −

R. Given any basis on hR one can introduce a lexi-
cographic order on h −

R and thus on D. This gives the concept of positive
and negative roots. A positive root is called simple if it cannot be written as
the sum of two positive roots. There are exactly dim hR simple roots aj and
each a ¥ D can be written as ; njaj with nj integers which are either all
positive or all negative.

For each a ¥ D one can choose Xa ¥ ga
C such that for all a, b ¥ D:

[Xa, X−a]=Ha

[H, Xa]=a(H) Xa for H ¥ hC

[Xa, Xb]=0 if a ] − b and a+b ¨ D

[Xa, Xb]=Na, bXa+b if a+b ¥ D, with Na, b=−N−a, −b

B(Xa, Xb)=da+b, 0

On the real algebra u generated by the elements iHa, Xa − X−a, i(Xa+X−a),
a ¥ D, the form B is strictly negative definite; so, u is a compact real form
of gC (cf. above). If y is the conjugation of gC with respect to u,
yXa=−X−a for a ¥ D. The set {Xa} is called a Weyl basis.

A Cartan decomposition of a semisimple Lie algebra g over R is a
direct sum g=k+p in a subalgebra k and a vector subspace p such that
the mapping h: K+P Q K − P (K ¥ k, P ¥ p) is an automorphism of g and
the form − B(X, hY) is strictly positive definite. h is called a Cartan
involution. Each semisimple Lie algebra over R has a Cartan decomposi-
tion. If gC is the complexification of g, s is the conjugation of gC with
respect to g, one can always choose a real form u such that su … u, so that
k=u 5 g, p=iu 5 g, and u=k+ip; u is then a compact real form of gC.
(E.g., for g=sl(n, R) the Cartan decomposition is the decomposition of a
matrix into its antisymmetric and symmetric part; in this case hX=− trX,
k=so(n), p={symmetric matrices}, and k+ip=su(n).) If gC is a semi-
simple Lie algebra over C, u its compact real form, then gC=u+iu is a
Cartan decomposition of gC. (E.g., for gC=sl(n, C) it is the decomposi-
tion of a matrix into its skew-hermitian and hermitian part.)
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Since

h=1 on k and h=−1 on p (53)

Then, for all x, y ¥ g

h ad(X) Y=ad(hX) hY (54)

h Ad(exp(X)) Y=Ad(exp(hX)) hY (55)

where Ad is the adjoint representation of G on g (e.g., Ad (g) X=gXg−1 if
G, g are linear), so that Ad(exp(X))=exp(ad(X)).

Let h be a maximal Abelian subalgebra of g, with a=h 5 p as large
as possible, and let a1=h 5 k. Then hR=a+ia1 and hC=hR+ihR is a
Cartan subalgebra of gC. (E.g., for g=sl(n, R), a1={0}, and a=hR are
the real diagonal matrices with null trace.) Let P be the set of positive roots
that do not vanish identically on a (for sl(n, R) this just coincides with the
set of positive roots). Let

nC= C
a ¥ P

ga
C, n=nC 5 g

Then nC and n are nilpotent Lie algebras and one has the direct vector
space sum

g=k+a+n (56)

(Iwasawa decomposition). From (ii) it follows that a is orthogonal with
respect to B to both k and n, and that n is orthogonal to itself. The
decomposition (56) exponentiates to

G=KAN (57)

where K=exp k, A=exp a, N=exp n, i.e., the mapping

(k, a, n) Q kan (58)

is a diffeomorphism of K × A × N onto G. (E.g., for sl(n, R), k is the rota-
tion algebra, a is the algebra of diagonal matrices with null trace, n is the
algebra of strictly triangular matrices; at the group level this decomposition
can be naturally obtained through the Gram–Schmidt orthogonalization
process.)
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To the root decomposition (51) of gC there corresponds a restricted
root decomposition

g=a+m+ C
aŒ ¥ DŒ

gaŒ

where m are the elements of k which commute with all the elements of a,
DŒ is the set of nonzero restrictions aŒ of a to a and

gaŒ={X ¥ g : ad(H) X=aŒ(H) X for all H ¥ a}

Since different roots a can have the same restriction aŒ to a, the multiplicity

maŒ=dim gaŒ (59)

can be higher than 1 for some algebras. The Cartan involution changes the
sign of the restricted roots:

hgaŒ=g−aŒ (60)

The algebra k can therefore be decomposed as

k=m+ C
aŒ ¥ PŒ

(gaŒ+hgaŒ) (61)

A Weyl basis {Xa} for gC can be projected on g by

Ya=1
2 (Xa+sXa) (62)

so that gaŒ=; RYa where the sum runs over all a ¥ D whose restriction to a
is aŒ.

On a Lie group one can define the (right invariant) Haar measure

dg= L
dim G

l=1
g−1 dl g

where dl g=g dlX and the dlX are a basis of 1-forms on g. Semisimple Lie
groups are unimodular, i.e., such that |det Ad(g)|=1 for each g ¥ G, so
that right invariant measures are also left invariant. The Iwasawa decom-
position induces the decomposition

dg=j(k, a, n) dk da dn (63)
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where j is a Jacobian factor. The groups G, K, A, N are all unimodular,
therefore both sides of (63) are invariant under the right and left transla-
tions g Q kR g, g Q gnL with kR ¥ K and nL ¥ N, so that j(k, a, n)=j(a).
On the other hand, the l.h.s. of (63) is also invariant under g Q ga−1, which
corresponds to kan Q ke · (ana−1) (with e the identity element), so that

j(a)=j(e)
“(ana−1)

“(n)

=j(e) det(Ad(a)|n)

=j(e) exp[Tr ad(exp−1 a)|n]

=j(e) exp 5 C
a ¥ P

a(exp−1 a)6

If the measures on G, K, A, N are conveniently normalized we can assume
that j(e)=1, so

dg=exp[2r(exp−1 a)] dk da dn (64)

with

r=1
2 C

a ¥ P
a (65)

Let y be a skew-hermitian representation of the compact form u on
a finite dimensional Hilbert space V. By analytically extending y to the
complexification gC=u+iu and then restricting to the real form g=k+p
one obtains a representation of the real algebra g (Weyl unitary trick). If
K ¥ k, P ¥ p, then y(K) and y(iP) are skew-hermitian, while y(P) is hermi-
tian. In other words,

y†(X)=−y(hX)

Denoting T(exp(X))=exp(y(X)), this property exponentiates (ref. 27,
p. 144) to

T†(g)=T−1(Gg) (66)
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fields in fluid turbulence, Rev. Modern Phys. 73:913–975 (2001).

18. G. Falkovich, V. Kazakov, and V. Lebedev, Particle dispersion in a multidimensional
random flow with arbitrary temporal correlations, Phys. A 249:36–46 (1998).

19. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill,
New York, 1965).

20. A. Gamba and I. Kolokolov, The Lyapunov spectrum of a continuous product of random
matrices, J. Stat. Phys. 85:489–499 (1996).

21. A. Gamba and I. Kolokolov, Dissipation statistics of a passive scalar in a multidimen-
sional smooth flow, J. Stat. Phys. 94:759–777 (1999).

Lyapunov Exponents for Products of Random Transformations 217



22. I. M. Gel’fand and A. M. Yaglom, Integration in function spaces and its applications in
quantum physics, J. Math. Phys. 1:48 (1960).

23. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press,
1978).

24. S. Helgason, Groups and Geometric Analysis (Academic Press, 1984).
25. A. Hüffman, Disordered wires from a geometric viewpoint, J. Phys. A 23:5733–5744

(1990).
26. K. Iwasawa, On some types of topological groups, Ann. of Math. 50:507–558 (1949).
27. A. W. Knapp, Representation Theory of Semisimple Groups (Princeton University Press,

1986).
28. A. W. Knapp, Lie Groups Beyond an Introduction (Birkhäuser, 1996).
29. I. V. Kolokolov, Functional representation for the partition function of the quantum

Heisenberg ferromagnet, Phys. Lett. A 114:99–104 (1986).
30. I. V. Kolokolov, Functional integration for quantum magnets: new method and new

results, Ann. Physics 202:165–185 (1990).
31. I. V. Kolokolov, The method of functional integration for one-dimensional localization,

higher correlators, and the average current flowing in a mesoscopic ring in an arbitrary
magnetic field, JETP 76:1099 (1993).

32. V. I. Oseledec, The multiplicative ergodic theorem. The Lyapunov characteristic numbers
of dynamical systems, Trans. Moscow Math. Soc. 19:197–231 (1968).

33. G. Paladin and A. Vulpiani, Scaling law and asymptotic distribution of Lyapunov
exponents in conservative dynamical systems with many degrees of freedom, J. Phys. A
19:1881 (1986).

34. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford,
1996).

218 Gamba


	1. INTRODUCTION
	2. RANDOM WALKS ON LIE GROUPSlabel iddue
	3. DECOMPOSITION OF THE TRAJECTORIESlabel idtre
	4. DECOMPOSITION OF THE GIBBS WEIGHTlabel idquattro
	5. DECOMPOSITION OF THE VOLUME FORMlabel idcinque
	6. STATISTICS OF LYAPUNOV EXPONENTSlabel idsei
	7. EXAMPLESlabel idsette
	LIE-CARTAN THEORYlabel idliecartan
	

